Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Front Behav Neurosci ; 17: 1257417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915532

RESUMO

Introduction: Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e., the sharing of parental responsibilities between multiple individuals in a nest, creates a socially enriching environment known to impact social and anxiety-related behaviors. Methods: This study examines the effects of (i) the CN condition and of (ii) ESI during the 3rd week of life (i.e., pre-weaning ESI) on motor, cognitive, and emotional domains during adolescence and adulthood in male and female rats reared in the two different housing conditions, as well as (iii) the potential of CN to mitigate the impact of ESI on offspring. Results: We found that in a spontaneous locomotor activity test, females exhibited higher activity levels compared to males. In female groups, adolescents reared in standard housing (SH) condition spent less time in the center of the arena, suggestive of increased anxiety levels, while the CN condition increased the time spent in the center during adolescence, but not adulthood, independently from ESI. The prepulse inhibition (PPI) test showed a reduced PPI in ESI adolescent animals of both sexes and in adult males (but not in adult females), with CN restoring PPI in males, but not in adolescent females. Further, in the marble burying test SH-ESI adolescent males exhibited higher marble burying behavior than all other groups, suggestive of obsessive-compulsive traits. CN completely reversed this stress-induced effect. Interestingly, ESI and CN did not have a significant impact on burying behavior in adult animals of both sexes. Discussion: Overall, our findings (i) assess the effects of ESI on locomotion, sensorimotor gating, and compulsive-like behaviors, (ii) reveal distinct vulnerabilities of males and females within these domains, and (iii) show how early-life social enrichment may successfully counteract some of the behavioral alterations induced by early-life social stress in a sex-dependent manner. This study strengthens the notion that social experiences during early-life can shape emotional and cognitive outcomes in adulthood, and points to the importance of social enrichment interventions for mitigating the negative effects of early social stress on neurodevelopment.

4.
Psychopharmacology (Berl) ; 240(6): 1359-1372, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37129616

RESUMO

RATIONALE: The prepulse inhibition (PPI) of the startle reflex is the best-established index of sensorimotor gating. We documented that the neurosteroid allopregnanolone (AP) is necessary to reduce PPI in response to D1 dopamine receptor agonists. Since Sprague-Dawley (SD) rats are poorly sensitive to the PPI-disrupting effects of these drugs, we hypothesized that AP might increase this susceptibility. OBJECTIVES: We tested whether AP is sufficient to increase the vulnerability of SD rats to PPI deficits in response to the D1 receptor full agonist SKF82958. METHODS: SD rats were tested for PPI after treatment with SKF82958 (0.05-0.3 mg/kg, SC) in combination with either intraperitoneal (1-10 mg/kg) or intracerebral (0.5 µg/µl/side) AP administration into the medial prefrontal cortex (mPFC) or nucleus accumbens shell. To rule out potential confounds, we measured whether SKF82958 affected the endogenous mPFC levels of AP. RESULTS: SD rats exhibited marked PPI deficits in response to the combination of systemic and intra-mPFC AP with SKF82958 but not with the D2 receptor agonist quinpirole (0.3-0.6 mg/kg, SC). SKF82958 did not elevate mPFC levels of AP but enhanced the content of its precursor progesterone. The PPI deficits caused by SKF82958 in combination with AP were opposed by the AP antagonist isoallopregnanolone (10 mg/kg, IP) and the glutamate NMDA receptor positive modulator CIQ (5 mg/kg, IP). CONCLUSION: These results suggest that AP enables the detrimental effects of D1 receptor activation on sensorimotor gating. AP antagonism or glutamatergic modulation counters these effects and may have therapeutic potential for neuropsychiatric disorders characterized by gating deficits.


Assuntos
Pregnanolona , Receptores de Dopamina D1 , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Pregnanolona/farmacologia , Benzazepinas/farmacologia , Reflexo de Sobressalto , Filtro Sensorial , Estimulação Acústica/métodos
5.
Neuropharmacology ; 233: 109548, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080337

RESUMO

Vulnerability to cocaine use disorder depends upon a combination of genetic and environmental risk factors. While early life adversity is a critical environmental vulnerability factor for drug misuse, allelic variants of the monoamine oxidase A (MAOA) gene have been shown to moderate its influence on the risk of drug-related problems. However, data on the interactions between MAOA variants and early life stress (ES) with respect to predisposition to cocaine abuse are limited. Here, we show that a mouse model capturing the interaction of genetic (low-activity alleles of the Maoa gene; MAOANeo) and environmental (i.e., ES) vulnerability factors displays an increased sensitivity to repeated in vivo cocaine psychomotor stimulant actions associated with a reduction of GABAA receptor-mediated inhibition of dopamine neurons of the ventral tegmental area (VTA). Depolarization-induced suppression of inhibition (DSI), a 2-arachidonoylglycerol (2AG)-dependent form of short-term plasticity, also becomes readily expressed by dopamine neurons from male MAOANeo ES mice repeatedly treated with cocaine. The activation of either dopamine D2 or CB1 receptors contributes to cocaine-induced DSI expression, decreased GABA synaptic efficacy, and hyperlocomotion. Next, in vivo pharmacological enhancement of 2AG signaling during repeated cocaine exposure occludes its actions both in vivo and ex vivo. This data extends our knowledge of the multifaceted sequelae imposed by this gene-environment interaction in VTA dopamine neurons of male pre-adolescent mice and contributes to our understanding of neural mechanisms of vulnerability for early onset cocaine use.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Estresse Fisiológico , Animais , Masculino , Camundongos , Fármacos do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Neurônios Dopaminérgicos , Endocanabinoides/metabolismo , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Área Tegmentar Ventral
7.
Exp Neurol ; 363: 114370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878398

RESUMO

Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.


Assuntos
Discinesia Induzida por Medicamentos , Neuroesteroides , Doença de Parkinson , Masculino , Ratos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/patologia , Dutasterida/metabolismo , Dutasterida/farmacologia , Dutasterida/uso terapêutico , Oxidopamina/toxicidade , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças
8.
J Neuroendocrinol ; 35(2): e13240, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36810840

RESUMO

Sociocultural attitudes towards cannabis legalization contribute to the common misconception that it is a relatively safe drug and its use during pregnancy poses no risk to the fetus. However, longitudinal studies demonstrate that maternal cannabis exposure results in adverse outcomes in the offspring, with a heightened risk for developing psychopathology. One of the most reported psychiatric outcomes is the proneness to psychotic-like experiences during childhood. How exposure to cannabis during gestation increases psychosis susceptibility in children and adolescents remains elusive. Preclinical research has indicated that in utero exposure to the major psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC), deranges brain developmental trajectories towards vulnerable psychotic-like endophenotypes later in life. Here, we present how prenatal THC exposure (PCE) deregulates mesolimbic dopamine development predisposing the offspring to schizophrenia-relevant phenotypes, exclusively when exposed to environmental challenges, such as stress or THC. Detrimental effects of PCE are sex-specific because female offspring do not display psychotic-like outcomes upon exposure to these challenges. Moreover, we present how pregnenolone, a neurosteroid that showed beneficial properties on the effects elicited by cannabis intoxication, normalizes mesolimbic dopamine function and rescues psychotic-like phenotypes. We, therefore, suggest this neurosteroid as a safe "disease-modifying" aid to prevent the onset of psychoses in vulnerable individuals. Our findings corroborate clinical evidence and highlight the relevance of early diagnostic screening and preventative strategies for young individuals at risk for mental diseases, such as male PCE offspring.


Assuntos
Transtornos Mentais , Neuroesteroides , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Humanos , Gravidez , Masculino , Feminino , Pregnenolona , Dopamina
10.
Psychopharmacology (Berl) ; 239(10): 3083-3102, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35943523

RESUMO

RATIONALE: The use of synthetic cannabinoid receptor agonists (SCRAs) is growing among adolescents, posing major medical and psychiatric risks. JWH-018 represents the reference compound of SCRA-containing products. OBJECTIVES: This study was performed to evaluate the enduring consequences of adolescent voluntary consumption of JWH-018. METHODS: The reinforcing properties of JWH-018 were characterized in male CD1 adolescent mice by intravenous self-administration (IVSA). Afterwards, behavioral, neurochemical, and molecular evaluations were performed at adulthood. RESULTS: Adolescent mice acquired operant behavior (lever pressing, Fixed Ratio 1-3; 7.5 µg/kg/inf); this behavior was specifically directed at obtaining JWH-018 since it increased under Progressive Ratio schedule of reinforcement, and was absent in vehicle mice. JWH-018 IVSA was reduced by pretreatment of the CB1-antagonist/inverse agonist AM251. Adolescent exposure to JWH-018 by IVSA increased, at adulthood, both nestlet shredding and marble burying phenotypes, suggesting long-lasting repetitive/compulsive-like behavioral effects. JWH-018 did not affect risk proclivity in the wire-beam bridge task. In adult brains, there was an increase of ionized calcium binding adaptor molecule 1 (IBA-1) positive cells in the caudate-putamen (CPu) and nucleus accumbens (NAc), along with a decrease of glial fibrillary acidic protein (GFAP) immunoreactivity in the CPu. These glial alterations in adult brains were coupled with an increase of the chemokine RANTES and a decrease of the cytokines IL2 and IL13 in the cortex, and an increase of the chemokine MPC1 in the striatum. CONCLUSIONS: This study suggests for the first time that male mice self-administer the prototypical SCRA JWH-018 during adolescence. The adolescent voluntary consumption of JWH-018 leads to long-lasting behavioral and neurochemical aberrations along with glia-mediated inflammatory responses in adult brains.


Assuntos
Agonistas de Receptores de Canabinoides , Quimiocina CCL5 , Animais , Cálcio , Carbonato de Cálcio , Agonistas de Receptores de Canabinoides/farmacologia , Proteína Glial Fibrilar Ácida , Indóis , Interleucina-13 , Interleucina-2 , Masculino , Camundongos , Naftalenos , Receptor CB1 de Canabinoide
11.
Neuropharmacology ; 217: 109192, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850212

RESUMO

Neurochemical, electrophysiological and behavioral evidence indicate that the potent α2-adrenoceptor antagonist RS 79948 is also a dopamine (DA) D2 receptor antagonist. Thus, results from ligand binding and adenylate cyclase activity indicate that RS 79948 binds to D2 receptors and antagonized D2 receptor-mediated inhibition of cAMP synthesis at nanomolar concentrations. Results from microdialysis indicated that RS 79948 shared with the selective α2-adrenergic antagonist atipamezole the ability to increase the co-release of DA and norepinephrine (NE) from noradrenergic terminals in the medial prefrontal cortex (mPFC), except that RS 79948-induced DA release persisted after noradrenergic denervation, unlike atipamezole effect, indicating that RS 79948 releases DA from dopaminergic terminals as well. Similarly to the D2 antagonist raclopride, but unlike atipamezole, RS 79948 increased extracellular DA and DOPAC in the caudate nucleus. Electrophysiological results indicate that RS 79948 shared with raclopride the ability to activate the firing of ventral tegmental area (VTA) DA neurons, while atipamezole was ineffective. Results from behavioral studies indicated that RS 79948 exerted effects mediated by independent, cooperative and contrasting inhibition of α2-and D2 receptors. Thus, RS 79948, but not atipamezole, prevented D2-autoreceptor mediated hypomotility produced by a small dose of quinpirole. RS 79948 potentiated, more effectively than atipamezole, quinpirole-induced motor stimulation. RS 79948 antagonized, less effectively than atipamezole, raclopride-induced catalepsy. Future studies should clarify if the dual α2-adrenoceptor- and D2-receptor antagonistic action might endow RS 79948 with potential therapeutic relevance in the treatment of schizophrenia, drug dependence, depression and Parkinson's disease.


Assuntos
Dopamina , Receptores Dopaminérgicos , Animais , Dopamina/metabolismo , Isoquinolinas , Naftiridinas , Norepinefrina/metabolismo , Quimpirol , Racloprida/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Dopamina D1
12.
Front Pharmacol ; 13: 821498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211019

RESUMO

Several epidemiological studies suggest an association between maternal infections during pregnancy and the emergence of neurodevelopmental disorders in the offspring, such as autism and schizophrenia. Animal models broadened the knowledge about the pathophysiological mechanisms that develop from prenatal infection to the onset of psychopathological phenotype. Mounting evidence supports the hypothesis that detrimental effects of maternal immune activation might be transmitted across generations. Here, we explored the transgenerational effects on the dopamine system of a maternal immune activation model based on the viral mimetic polyriboinosinic-polyribocytidilic acid. We assessed dopamine neurons activity in the ventral tegmental area by in vivo electrophysiology. Furthermore, we studied two behavioral tests strictly modulated by the mesolimbic dopamine system, i.e., the open field in response to amphetamine and the prepulse inhibition of the startle reflex in response to the D2 agonist apomorphine. Second-generation adult male rats did not display any deficit in sensorimotor gating; however, they displayed an altered activity of ventral tegmental area dopamine neurons, indexed by a reduced spontaneous firing rate and a heightened motor activation in response to amphetamine administration in the open field. On the other hand, second-generation female rats were protected from ancestors' polyriboinosinic-polyribocytidilic acid treatment, as they did not show any alteration in dopamine cell activity or in behavioral tests. These results confirm that maternal immune activation negatively influences, in a sex-dependent manner, neurodevelopmental trajectories of the dopamine system across generations.

13.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215325

RESUMO

The enzyme monoamine oxidase A (MAOA) catalyzes the degradation of several neurotransmitters, including serotonin. A large body of evidence has shown that genetic MAOA deficiency predisposes humans and mice to aggression and antisocial behavior. We previously documented that the aggression of male MAOA-deficient mice is contributed by serotonin 5-HT2 and glutamate N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex (PFC). Indeed, blocking either receptor reduces the aggression of MAOA knockout (KO) mice; however, 5-HT2 receptor antagonists, such as ketanserin (KET), reduce locomotor activity, while NMDA receptor blockers are typically associated with psychotomimetic properties. To verify whether NMDA receptor blockers induce psychotomimetic effects in MAOA KO mice, here we tested the effects of these compounds on prepulse inhibition (PPI) of the acoustic startle reflex. We found that male MAOA KO mice are hypersensitive to the PPI-disrupting properties of NMDA receptor antagonists, including the non-competitive antagonist dizocilpine (DIZ; 0.1, 0.3 mg/kg, IP) and the NR2B subunit-specific blocker Ro-256981 (5, 10 mg/kg, IP). Since KET has been previously shown to counter the PPI deficits caused by NMDA receptor antagonists, we tested the behavioral effects of the combination of KET (2 mg/kg, IP) and these drugs. Our results show that the combination of KET and DIZ potently reduces aggression in MAOA KO mice without any PPI deficits and sedative effects. While the PPI-ameliorative properties of KET were also observed after infusion in the medial PFC (0.05 µg/side), KET did not counter the PPI-disruptive effects of Ro-256981 in MAOA KO mice. Taken together, these results point to the combination of non-subunit-selective NMDA and 5-HT2 receptor antagonists as a potential therapeutic approach for aggression and antisocial behavior with a better safety and tolerability profile than each monotherapy.

14.
Mol Ther ; 30(4): 1465-1483, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038583

RESUMO

Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Dopamina , Neurônios Dopaminérgicos/metabolismo , Inativação Gênica , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Fenótipo , Substância Negra/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Front Neurosci ; 15: 675061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262429

RESUMO

Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks' addictive liability, causes millions of deaths yearly. Ethanol's addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol's first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via µ opioid receptor (µOR) stimulation. In fact, inhibition of salsolinol's generation in the pVTA or blockade of pVTA µORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol's addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption.

16.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562259

RESUMO

Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Dronabinol/toxicidade , Sistema Límbico/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Feminino , Alucinógenos/toxicidade , Sistema Límbico/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/patologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-33031862

RESUMO

Cannabis is the illicit drug most widely used by pregnant women worldwide. Its growing acceptance and legalization have markedly increased the risks of child psychopathology, including psychotic-like experiences, which lowers the age of onset for a first psychotic episode. As the majority of patients with schizophrenia go through a premorbid condition long before this occurs, understanding neurobiological underpinnings of the prodromal stage of the disease is critical to improving illness trajectories and therapeutic outcomes. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of prenatal cannabinoid exposure (PCE), exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area (VTA), converging on a hyperdopaminergic state. This leads to a silent psychotic-like endophenotype that is unmasked by a single exposure to THC. Here, we further characterized the VTA dopamine neuron and sensorimotor gating functions of PCE rats exposed to acute stress or a challenge of the D2 receptor agonist apomorphine, by using in vivo single-unit extracellular recordings and Prepulse Inhibition (PPI) analyses. At pre-puberty, PCE male rat offspring display a reduced population activity of VTA dopamine neurons in vivo, the majority of which are tonically active. PCE male progeny also exhibit enhanced sensitivity to dopamine D2 (DAD2) receptor activation and a vulnerability to acute stress, which is associated with compromised sensorimotor gating functions. This data extends our knowledge of the multifaceted sequelae imposed by PCE in the mesolimbic dopamine system of male pre-adolescent rats, which renders a neural substrate highly susceptible to subsequent challenges that may trigger psychotic-like outcomes.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Dronabinol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Feminino , Masculino , Núcleo Accumbens/metabolismo , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
18.
Front Behav Neurosci ; 14: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581736

RESUMO

Despite great efforts to warn pregnant women that drugs of abuse impact development of the embryo and the fetus, the use of legal and illegal drugs by childbearing women is still a major public health concern. In parallel with well-established teratogenic effects elicited by some drugs of abuse, epidemiological studies show that certain psychoactive substances do not induce birth defects but lead to subtle neurobehavioral alterations in the offspring that manifest as early as during infancy. Although gender differences in offspring susceptibility have not been fully investigated, a number of longitudinal studies indicate that male and female progeny exposed in utero to drugs of abuse show different vulnerabilities to deleterious effects of these substances in cognitive, executive, and behavioral domains. Here, we briefly review the existing literature focusing on gender differences in the neurobehavioral consequences of maternal exposure to drugs of abuse. Overall, the data strongly indicate that male exposed progeny are more susceptible than female to dysfunctions in cognitive processing and emotional regulation. However, insights into the mechanisms determining this natural phenomenon are not currently available. Our analysis prompts future investigations to implement clinical studies including the influence of gender/sex as a biological variable in the outcome of offspring prenatally exposed to drugs of abuse.

19.
J Neuroendocrinol ; 32(1): e12792, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505075

RESUMO

Sleep deprivation (SD) is associated with a broad spectrum of cognitive and behavioural complications, including emotional lability and enhanced stress reactivity, as well as deficits in executive functions, decision making and impulse control. These impairments, which have profound negative consequences on the health and productivity of many individuals, reflect alterations of the prefrontal cortex (PFC) and its connectivity with subcortical regions. However, the molecular underpinnings of these alterations remain elusive. Our group and others have begun examining how the neurobehavioural outcomes of SD may be influenced by neuroactive steroids, a family of molecules deeply implicated in sleep regulation and the stress response. These studies have revealed that, similar to other stressors, acute SD leads to increased synthesis of the neurosteroid allopregnanolone in the PFC. Whereas this up-regulation is likely aimed at counterbalancing the detrimental impact of oxidative stress induced by SD, the increase in prefrontal allopregnanolone levels contributes to deficits in sensorimotor gating and impulse control, signalling a functional impairment of PFC. This scenario suggests that the synthesis of neuroactive steroids during acute SD may be enacted as a neuroprotective response in the PFC; however, such compensation may in turn set off neurobehavioural complications by interfering with the corticolimbic connections responsible for executive functions and emotional regulation.


Assuntos
Afeto/fisiologia , Disfunção Cognitiva/etiologia , Função Executiva/fisiologia , Neuroesteroides/metabolismo , Córtex Pré-Frontal/metabolismo , Pregnanolona/metabolismo , Privação do Sono/complicações , Animais , Disfunção Cognitiva/metabolismo , Humanos , Privação do Sono/metabolismo
20.
Nat Neurosci ; 22(12): 1975-1985, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611707

RESUMO

The increased legal availability of cannabis has led to a common misconception that it is a safe natural remedy for, among others, pregnancy-related ailments such as morning sickness. Emerging clinical evidence, however, indicates that prenatal cannabis exposure (PCE) predisposes offspring to various neuropsychiatric disorders linked to aberrant dopaminergic function. Yet, our knowledge of how cannabis exposure affects the maturation of this neuromodulatory system remains limited. Here, we show that male, but not female, offspring of Δ9-tetrahydrocannabinol (THC)-exposed dams, a rat PCE model, exhibit extensive molecular and synaptic changes in dopaminergic neurons of the ventral tegmental area, including altered excitatory-to-inhibitory balance and switched polarity of long-term synaptic plasticity. The resulting hyperdopaminergic state leads to increased behavioral sensitivity to acute THC exposure during pre-adolescence. The neurosteroid pregnenolone, a US Food and Drug Administration (FDA) approved drug, rescues synaptic defects and normalizes dopaminergic activity and behavior in PCE offspring, thus suggesting a therapeutic approach for offspring exposed to cannabis during pregnancy.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Dronabinol/efeitos adversos , Dronabinol/farmacologia , Pregnenolona/farmacologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Dronabinol/antagonistas & inibidores , Endofenótipos , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Atividade Motora/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Ratos , Assunção de Riscos , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Caracteres Sexuais , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...